Chromosome Analysis for Blood, Bone Marrow, and Solid Tumor Cancers

Introduction

Chromosome analysis for blood, bone marrow, and solid tumors is addressed by this guideline.

Procedures addressed

The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements.

<table>
<thead>
<tr>
<th>Procedures addressed by this guideline</th>
<th>Procedure codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome Analysis, Blood or Bone Marrow</td>
<td>88237 88264 88291</td>
</tr>
<tr>
<td>Chromosome Analysis, Solid Tumor</td>
<td>88239 88264 88291</td>
</tr>
<tr>
<td>Cytogenomic neoplasia (genome-wide) microarray analysis, interrogation of genomic regions for copy number and loss-of-heterozygosity variants for chromosomal abnormalities</td>
<td>81277</td>
</tr>
</tbody>
</table>

What are chromosome abnormalities in cancer

Introduction

A chromosome abnormality is any difference in the structure, arrangement, or amount of genetic material packaged into the chromosomes. Chromosome abnormalities have been identified in many types of cancer, including leukemias, lymphomas, and solid tumors.¹
Chromosome abnormalities

Chromosome abnormalities can include

- deletions
- duplications
- balanced or unbalanced rearrangements, and
- gain or loss of whole or partial chromosomes.

Some chromosome abnormalities are characteristic of certain types of malignancy, and can be used to classify a type or subtype of cancer. For example, the “Philadelphia chromosome” is defined by a common translocation between chromosomes 9 and 22, and indicates chronic myelogenous leukemia in most cases.¹

Disease monitoring and treatment response

These abnormalities can play a key role in the development, diagnosis, and monitoring of cancer.¹

The cytogenetics of a cancer can also change over time or in response to treatment. Therefore, chromosome analysis can be used to monitor disease progression and treatment response.¹

Test information

Introduction

Chromosome analysis is routinely performed on bone marrow biopsy for the diagnosis and monitoring of leukemia, lymphoma, and other hematological disorders.

Chromosome analysis

Chromosome analysis (karyotyping) requires stimulating cells to divide, arresting cell division at metaphase when the chromosomes can be seen microscopically, and staining to visualize the banding patterns.²

Chromosome analysis identifies any differences from normal that can be seen under the microscope. This includes all of the following:

- entire missing or extra chromosomes
- deletions or duplications within a chromosome that are large enough to be seen by microscope, and
- rearrangements including translocations and inversions.
Chromosome microarray

Smaller copy number changes can be identified using chromosome microarray.\(^3\)

Guidelines and evidence

Introduction

This section includes relevant guidelines and evidence pertaining to chromosome analysis for blood, bone marrow, and solid tumors.

National Comprehensive Cancer Network

The National Comprehensive Cancer Network (NCCN) considers chromosome analysis of a bone marrow biopsy to be routine standard of care in the evaluation of acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), multiple myeloma (MM), myelodysplastic syndromes (MDS), and Burkitt's lymphoma (BL).\(^4\)

American College of Medical Genetics

The American College of Medical Genetics (ACMG, 2016) provides technical standards and guidelines for chromosome analysis in acquired chromosomal abnormalities of blood and bone marrow:\(^5\)

- Bone marrow is the preferred specimen for cytogenetic analysis hematopoetic neoplasms.
- “Cytogenetic analyses of hematological neoplasms are performed to detect and characterize clonal chromosomal abnormalities that have important diagnostic, prognostic, and therapeutic implications.”
- “Furthermore, cytogenetic analysis can provide crucial information regarding specific genetically defined subtypes of these neoplasms that have targeted therapies.”
- “At time of relapse, cytogenetic analysis can be used to confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process.”
- Acute Myeloid Leukemia: “G-banded chromosome analysis should preferably be performed first. However, interphase FISH analysis for KMT2A (MALL) gene rearrangement is highly recommended on all diagnostic AML samples because these abnormalities are often cryptic and have a pronounced prognostic impact.”
- Acute Lymphocytic Leukemia: “B-lineage ALL is more frequent, accounting for 85% of pediatric ALL and 75% of adult ALL.1 - In pediatric/young adult B-lineage ALL, G-banded chromosome analysis should be performed simultaneously with interphase FISH.”
Criteria

Chromosome analysis on a bone marrow biopsy is considered medically necessary when performed in the evaluation of leukemia, lymphoma, and other hematological disorders.

References

Introduction

These references are cited in this guideline.

5. American College of Medical Genetics. Section E6.1-6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow – acquired chromosomal abnormalities. 2016. Available at https://pdfs.semanticscholar.org/34bc/c7ce2ff76bf7637f8c5b9892f823cbd0f68e.pdf