DermTech Pigmented Lesion Assay

Procedures addressed

The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan’s procedure code list for management requirements.

<table>
<thead>
<tr>
<th>Procedures addressed by this guideline</th>
<th>Procedure code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DermTech Pigmented Lesion Assay</td>
<td>0089U</td>
</tr>
</tbody>
</table>

What is melanoma

Definition

According to the American Academy of Dermatology (AAD), the incidence of primary cutaneous melanoma has been increasing substantially for several decades. The incidence of melanoma has been reported to be increasing at a rate of 3% to 7% annually among fair-skinned Caucasian populations, which is faster than other major cancers.¹

Melanoma accounts for the majority of skin cancer related deaths, but treatment is nearly always curative with early detection of disease. Minimal depth (thin) melanomas have a cure rate of nearly 100%, while tumors with a Breslow depth of greater than 4mm have a 10-year survival rate of less than 50%.¹

Standard of care for the assessment of clinically suspicious pigmented skin lesions is surgical biopsy and subsequent histopathology. However, histopathology is believed to have inherent limitations. Some lesions that are likely to be true melanomas based on clinical behavior do not meet the complete set of histologic criteria to establish a melanoma diagnosis.¹ There is also considerable interrater variability with visual image and pattern recognition of skin lesions.² In an effort to improve patient survival, a number of novel noninvasive techniques have been developed to classify pigmented skin lesions at an earlier stage.³
Test information
Introduction

The Pigmented Lesion Assay (PLA) is a non-invasive method for the biopsy of clinically atypical pigmented lesions or moles using an adhesive patch to obtain mRNA from the surface of the suspicious lesion.

According to the manufacturer, the PLA assesses gene expression consistent with melanoma and is intended as a decision making aid for the clinician to determine whether or not to biopsy a pigmented skin lesion, clinically suspicious for melanoma.

The test is intended for use on pigmented lesions suspicious for melanoma that meet at least one of the A (asymmetry) B (border) C (color) D (diameter) E (evolving) criteria for which the clinician would like additional information prior to surgical biopsy. Uses of the PLA include the following: lesions being followed for change; lesions in cosmetically sensitive areas of the body; lesions on patients with possible risks for complications during surgical biopsy; or lesions among patients who refuse biopsy.

The PLA is a non-invasive method for the biopsy of clinically atypical pigmented lesions or moles using an adhesive patch to obtain mRNA from the surface of the suspicious lesion. The method of adhesive tape stripping has been used to obtain RNA from the stratum corneum for gene expression of other disorders, such as allergic and irritant skin reactions and psoriasis.

The PLA detects the expression of 2 specific genes, PRAME and LINC00518, both of which are believed to play key roles in oncogenesis and both of which have been shown to be elevated in melanoma. If one or more of the genes is detected by the PLA, the gene expressive is considered positive. The positive lesions generally undergo surgical biopsy to definitively establish a melanoma diagnosis.

The test manufacturer notes that this assay cannot be used on mucous membranes, palms of the hands, and soles of the feet.

Guidelines and evidence
Introduction

The following section includes relevant guidelines and evidence pertaining to DermTech PLA.

American Academy of Dermatology

The American Academy of Dermatology (AAD) acknowledges that the clinical and prognostic significance of the use of biomarkers and mutational analysis is still unclear and there are gaps regarding their clinical usefulness that have yet to be addressed. The 2019 guideline states:

- "Routine molecular testing, including GEP, for prognostication is discouraged until better use criteria are defined. The application of molecular information for clinical management (eg, sentinel lymph node eligibility, follow-up, and/or therapeutic choice) is not recommended outside of a clinical study or trial."
• “Once a lesion has been identified as clinically concerning, dermoscopy can improve diagnostic accuracy and/or help direct optimal and adequate tissue sampling in the case of very large lesions or those in cosmetically or functionally sensitive areas. Newer noninvasive techniques (eg, reflectance confocal microscopy [RCM], as well as electrical impedance spectroscopy, gene expression analysis, optical coherence tomography, and others can also be considered as these become more readily available.”

• “Lingering questions remain regarding the degree to which the selected gene sets represent genes associated with tumor progression, how they compare with current well-characterized prognostic factors and AJCC eighth edition survival data, and whether they improve prognostic models enough to affect patient management and outcomes. As such, the WG discourages routine baseline GEP for prognostication.”

• “There is insufficient evidence to recommend routine molecular profiling assessment for baseline prognostication. Evidence is lacking that molecular classification should be used to alter patient management outside of current guidelines (eg, NCCN and AAD). The criteria for and the utility of prognostic molecular testing, including GEP, in aiding clinical decision making (eg, SLNB eligibility, surveillance intensity, and/or therapeutic choice) needs to be evaluated in the context of clinical study or trial.”

• “Noninvasive genomic methods (eg, adhesive patch “biopsy”) are being investigated to further classify melanocytic lesions as either benign or malignant to guide the need for further biopsy. The uptake of 1 or more of these technologies will eventually depend on cumulative evidence regarding their effectiveness, clinical utility, cost versus benefit, and competing strategies.”

National Comprehensive Cancer Network

The National Comprehensive Cancer Network (NCCN, 2020) makes no recommendation to consider or use the DermTech PLA test in the evaluation of skin lesions suspicious for melanoma.6

Selected Relevant Publications

Based on assessment of the peer reviewed literature, there is insufficient evidence to support the use of DermTech PLA to accurately discriminate between early melanoma and non-melanoma in patients with clinically suspicious lesions.1,2,7-18 A recurring limitation within the evidence base is the assumption that non-biopsied PLA negative results are true negatives without follow up assessment for confirmation. Additional limitations include retrospective study designs, small individual study populations, overlapping patient populations, varying follow up times, and a lack of reported health outcomes. Additional well-designed studies are needed to replicate the clinical validity findings.

There is published evidence that PLA testing influences clinical management decisions regarding biopsy, but it remains unclear if these PLA-based decisions result in clinically meaningful patient health outcomes. Well-designed studies that report the impact of
PLA testing on clinical management decisions together with the health outcomes that result from those decisions are needed to confirm the clinical utility of the DermTech PLA test.

Criteria

Introduction

Requests for DermTech PLA are reviewed using the following criteria.

This test is considered investigational and/or experimental.

- Investigational and experimental (I&E) molecular and genomic (MolGen) tests refer to assays involving chromosomes, DNA, RNA, or gene products that have insufficient data to determine the net health impact, which typically means there is insufficient data to support that a test accurately assesses the outcome of interest (analytical and clinical validity), significantly improves health outcomes (clinical utility), and/or performs better than an existing standard of care medical management option. Such tests are also not generally accepted as standard of care in the evaluation or management of a particular condition.

- In the case of MolGen testing, FDA clearance is not a reliable standard given the number of laboratory developed tests that currently fall outside of FDA oversight and FDA clearance often does not assess clinical utility.

References

Introduction

This guideline cites the following references


