Leber Hereditary Optic Neuropathy (LHON) Genetic Testing

Procedures addressed

The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements.

<table>
<thead>
<tr>
<th>Procedures addressed by this guideline</th>
<th>Procedure codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHON Known Familial Mutation Analysis</td>
<td>81403</td>
</tr>
<tr>
<td>MT-ND4, MT-ND6 Targeted Mutation Analysis</td>
<td>81401</td>
</tr>
<tr>
<td>Whole Mitochondrial Genome</td>
<td>81460</td>
</tr>
</tbody>
</table>

What is Leber Hereditary Optic Neuropathy

Definition

Leber Hereditary Optic Neuropathy (LHON) is a mitochondrial disorder that mainly affects the eye. It is characterized by bilateral painless subacute vision loss that begins in the second and third decades of life. It usually has onset between 15-30 years of age, and leads to rapid, progressive blindness. Visual acuity usually deteriorates to 20/200 or worse.1-3

- The primary cell type that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP production and oxidative stress.4
- LHON is primarily a clinical diagnosis, but a definitive diagnosis can be rapidly obtained by genetic testing. Features include central or cecocentral scotomas, impaired color vision, and ultimately optic atrophy/optic nerve head pallor, especially temporally.1,5,6 However, these features are common to mitochondrial optic neuropathies; therefore, subacute onset and a maternal family history of visual loss, particularly in a young adult, can be useful for determining a diagnosis of LHON.5
- LHON has the following clinical stages:5
 - 0. Asymptomatic (mutation carriers)
 - 1. Subacute (<6 months from onset)
 - 2. Dynamic (6-12 months)
3. Chronic (>12 months)

Asymptomatic carriers may have recognizable changes on fundus examination and optical coherence tomography (OCT) measurements including vascular abnormalities (microangiopathy and telangiectatic vessels), hyperemia of the optic disc, and retinal nerve fiber layer swelling (pseudoedema). Loss of macular retinal ganglion cells on OCT develops when a person converts to the symptomatic stage. A central scotoma develops and central visual acuity rapidly starts to deteriorate. The course over the first weeks/months is described as acute/subacute, depending on the rapidity of central vision loss. Visual acuity typically stabilizes within 4-6 months. Clinical metrics (e.g., visual fields and OCT measurements) may evolve, but typically plateau at 1 year from onset. The chronic stage follows. Most affected individuals remain stable with profoundly impaired vision; however, some may experience some spontaneous visual recovery depending on the age of onset and mutation.

• Within 1 year, 97% of those affected have involvement of the second eye, such that a patient presenting with a unilateral optic neuropathy for longer than 1 year is highly unlikely to have LHON-related vision loss.

• Other neurologic features may include: tremor, peripheral neuropathy, myopathy, and/or movement disorders. Additionally, women may develop a multiple sclerosis-like progressive disease.

• Some clinicians treat children presymptomatically with antioxidants when their genetic status is known.

• People who have a pathogenic variant consistent with LHON should avoid smoking and secondary smoke. Restriction of alcohol consumption and exposure to mitotoxic agents is also advisable.

• The prevalence of LHON in most populations is unknown. In Caucasian populations estimates range from 1 in 31,000 to 1 in 50,000. Men are about 4-5 times more likely to develop LHON than women.

• LHON is caused by point mutations in the mitochondrial genome which is separate from nuclear DNA.

• Several mtDNA mutations have been reported to cause LHON. However, 90% of affected individuals have one of three common mitochondrial mutations: G3460A (13%), G11778A (70%) and T14484C (14%).

• A 2016 expert-authored review stated the following regarding genotype-phenotype correlations:

 o The mtDNA mutation T14484C is associated with a partial recovery rate of 37%-64%, the G11778A mutation with 4%-25%, and the G3460A mutation with 15%-25%.

 o "m.3460G>A is associated with the worst impairment in visual function. m.11778G>A has an intermediate phenotype. Although published reports would
appear to indicate otherwise, the m.3460G>A pathogenic variant is generally accepted among experts as having the worst visual recovery rate.” ¹

- “The clinical clinical penetrance of primary mtDNA LHON mutations is also thought to be influenced by the specific mitochondrial genetic background on which they occur. These mtDNA haplogroups are defined by a number of common genetic polymorphisms that have clustered together during human evolution and population migrations. The haplogroup J background, which is found in about 10% of people of European extraction, increases the clinical penetrance in LHON pedigrees harboring the m.11778G>A and m.14484T>C mutations. On the other hand, carriers of the m.3460G>A mutation are more likely to become visually affected on a haplogroup K background.” ⁸

- Earlier age of onset (younger than 20 years), a subacute time course of vision loss, and larger optic discs are all associated with a better visual prognosis.

- Mitochondrial DNA (mtDNA) is maternally transmitted. Pathogenic variants in the mtDNA may be de novo or maternally inherited. A male who carries a mtDNA mutation cannot pass it on to his children.¹

 o About 60% of people with LHON have an identifiable maternal family history of disease. In the remaining 40%, the family history may be incomplete or the affected individual could have a new (de novo) mutation but this is rare.¹²

 o Not all people with an LHON disease-causing mtDNA mutation will develop symptoms. Only about 50% of males and 10% of females who have a known disease-causing LHON mutation will develop blindness.² There must be other genetic and environmental factors that explain the variable appearance of symptoms and the gender differences.¹²

- Diseases like LHON that are attributed to mtDNA mutations have unique patterns of inheritance and penetrance governed by the principles of maternal inheritance, heteroplasmy, replicative segregation, and the critical threshold. Heteroplasmy and replicative segregation contribute to the heterogeneity of mitochondrial disease phenotypes, even among related individuals. Critical threshold is reached when the wild-type mtDNA cannot compensate for the mutant mtDNA in a cell or tissue. This accounts for targeted tissue involvement and age dependent onset. Even more variability is present because tissue-specific segregation of mutant mtDNA is stochastic during embryogenesis.⁴ Heteroplasmy is present in 10%-15% of individuals with a LHON-causing mtDNA variant; the majority of individuals with a LHON-causing mtDNA variant are homoplasmic.¹

Test information

- An ophthalmological evaluation can confirm the diagnosis of LHON:¹²

 o Eye testing may include fundus exam, visual field testing, and imaging. Other testing, including angiography and electrophysiology, are sometimes warranted.
This testing may reveal characteristic findings of LHON or rule out other causes of acute vision loss.

- In individuals with a suspected diagnosis that cannot be confirmed by eye findings alone, molecular genetic testing may be diagnostic.

- The LHON three mtDNA mutation panel involves targeted testing of three common mutations in mtDNA (G3460A, G11778A and T14484C).1-3 These three mutations account for over 90% of mtDNA mutations found in people with LHON.1,5

- The three LHON mutations are also included on a number of more general mitochondrial targeted mutation panels (in conjunction with genes for MELAS, MERRF and Leigh syndrome).

- Full sequencing of the entire mitochondrial genome can be done to identify the remaining 10% of mtDNA mutation in individuals affected with LHON. Since the mitochondrial genome is highly polymorphic, this is not routinely offered unless clinical suspicion is very high and there is no evidence of paternal transmission.1 If the status of heteroplasmy is of concern, next generation testing with high read depth may be preferable.8 Typically, Sanger sequence analysis will miss heteroplasmy below 20%. With suitable depth of coverage, NGS can detect heteroplasmy down to \sim 1%.9,10

- A number of large panels sequence the mitochondrial genome in conjunction with nuclear-encoded mitochondrial genes for a broad approach to testing.

- DNA testing can be performed on a blood specimen. Muscle biopsy is generally not necessary, but some labs accept blood, saliva and muscle samples.

Guidelines and evidence

- No evidence-based U.S. testing guidelines were identified for LHON.

- An international consensus conference (2017) with a panel of experts from Europe and North America made the following statements regarding the clinical and therapeutic management of LHON:5

 - “LHON primarily is a clinical diagnosis…. A definitive diagnosis of LHON is rapidly obtained by the molecular identification of one of the 3 common mtDNA mutations (m.11778G>A/MT-ND4, m.3460G>A/MT-ND1, m.14484T>C/MT-ND6), accounting for about 90% of cases. If this primary screen is negative and there is a high index of clinical suspicion supported by a maternal mode of inheritance in a patient with a family history, sequencing the entire mtDNA is advisable to identify other, but rare, mtDNA mutations.”

 - “The diagnosis of LHON should be based on a careful history, evaluation of key structural and functional visual parameters, and on a molecular confirmation of a pathogenic mtDNA mutation. The management of LHON includes genetic counseling, informing the patient about potentially preventable lifestyle risk factors and, for subacute and dynamic cases, the use of idebenone at the
currently approved dose. Idebenone should be discontinued in nonresponder patients and is currently not recommended in patients in the chronic stages of the disease. These guidelines and recommendations are based on a consensus developed on the current state of the literature. Further investigations and clinical trials are needed to lead to better disease-modifying treatments and to improve the management of patients with LHON.”

• Although not specific to genetic testing for LHON, the Mitochondrial Medicine Society (2015) developed consensus recommendations for the diagnosis and management of mitochondrial disease. Testing strategies, including strategies for genetic testing, were discussed.

 o Recommendations for DNA testing include the following:

 ▪ “Massively parallel sequencing/NGS of the mtDNA genome is the preferred methodology when testing mtDNA and should be performed in cases of suspected mitochondrial disease instead of testing for a limited number of pathogenic point mutations.”

 ▪ “Patients with a strong likelihood of mitochondrial disease because of a mtDNA mutation and negative testing in blood, should have mtDNA assessed in another tissue to avoid the possibility of missing tissue-specific mutations or low levels of heteroplasmy in blood; tissue-based testing also helps assess the risk of other organ involvement and heterogeneity in family members and to guide genetic counseling.”

 ▪ “Heteroplasmy analysis in urine can selectively be more informative and accurate than testing in blood alone, especially in cases of MELAS due to the common m.3243 A>G mutation.”

 ▪ “When considering nuclear gene testing in patients with likely primary mitochondrial disease, NGS methodologies providing complete coverage of known mitochondrial disease gene is preferred. Single-gene testing should usually be avoided because mutations in different genes can produce the same phenotype. If no mutation is identified via known NGS panels, then whole exome sequencing should be considered.”

• The European Federation of Neurological Sciences (2009) provide consensus-based guidelines for LHON genetic testing: “If the phenotype suggests syndromic mitochondrial disorder due to mtDNA point mutations (MELAS, MERRF, NARP, LHON), DNA-microarrays using allele-specific oligonucleotide hybridization, real-time-PCR or single-gene sequencing are indicated.”

• A 2016 expert-authored review suggests the following testing strategy for those with a known or suspected diagnosis of LHON:¹

 o “Three common mtDNA pathogenic variants account for 90%-95% of LHON. Targeted analysis for one of these three variants should be performed first.”

 o “A multi-gene panel that includes the mitochondrial genes that encode subunits of NADH dehydrogenase, MT-ND1, MT-ND2, MT-ND4, MT-ND4L, MT-ND5, and
MT-ND6, which are known to cause LHON and other genes of interest may also be considered.

- “Complete mtDNA sequencing may be considered if use of targeted testing and/or a multi-gene panel did not identify a pathogenic variant, clinical suspicion remains high, and there is no evidence of paternal transmission.”

- For those seeking predictive testing (e.g. they are not currently affected), this review states: ¹
 - “Testing of at-risk asymptomatic adults for LHON is possible ... Such testing is not useful in predicting age of onset, severity, or rate of progression of visual loss in asymptomatic individuals.”
 - “Testing of asymptomatic individuals younger than age 18 years who are at risk for adult-onset disorders for which no treatment exists is not considered appropriate.”

Criteria

LHON known familial mutation testing

- Genetic Counseling:
 - Pre and post-test counseling by an appropriate provider (as deemed by the Health Plan policy), AND

- Previous Genetic Testing:
 - No previous genetic testing for familial LHON mutation, and
 - LHON causing mutation identified in 1st degree biological maternal relative, AND

- Predictive Testing for Asymptomatic Individual:
 - 18 years of age or older, or
 - Under the age of 18 years, and
 - Presymptomatic treatment with antioxidants is being considered, OR

- Diagnostic Testing for Symptomatic individuals:
 - Ophthalmology examination is suggestive, but not confirmatory, of a diagnosis of LHON, OR

- Prenatal Testing for At-Risk Pregnancies:
 - LHON disease-causing mutation identified in a previous child or in the mother, AND

- Rendering laboratory is a qualified provider of service per the Health Plan policy
LHON targeted mutation analysis (G3460A, G11778A and T14484C)

- Genetic Counseling:
 - Pre and post-test counseling by an appropriate provider (as deemed by the Health Plan policy), AND
- Previous Testing:
 - No previous genetic testing for LHON, and
 - No known LHON mutation in the family, AND
- Diagnostic Testing for Symptomatic Individuals:
 - Ophthalmology examination is suggestive, but not confirmatory, of a diagnosis of LHON, and
 - No evidence of paternal transmission, AND
- Rendering laboratory is a qualified provider of service per the Health Plan policy

Whole mtDNA sequencing

- Genetic Counseling:
 - Pre and post-test counseling by an appropriate provider (as deemed by the Health Plan policy), AND
- Criteria for LHON targeted mutation analysis is met, AND
- No mutations identified in the targeted mutation analysis

References

